If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+13m=42
We move all terms to the left:
m^2+13m-(42)=0
a = 1; b = 13; c = -42;
Δ = b2-4ac
Δ = 132-4·1·(-42)
Δ = 337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{337}}{2*1}=\frac{-13-\sqrt{337}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{337}}{2*1}=\frac{-13+\sqrt{337}}{2} $
| 11=y+(-2) | | -7=-13+3m | | 2(2x+10)+x=50 | | 12x-191=24x+385 | | 5k+8=3k | | 180=(9x+2)+(10x+2) | | 12.00+x=564 | | (-20)=m+7 | | 2y+3=9y-7=7y+4 | | 26(10)=3x+4 | | 10−n=–10+3n | | 12=5(x+4)-5x | | 5b-71=4 | | 7(-4+k)=-84 | | 7p+3p-7=13 | | 13=13+u | | (7x+10)+(13x+10)=180 | | 5x+16=x+4(5+x) | | 8x-4=5x+13 | | 11x-8=-8 | | 3/8=1/4a | | 3-x/4+x=8 | | –2−10m+4=–4m−4 | | 4=5r-6 | | -4g=-5-3g | | 9-8x-20=6x+1 | | 5(7p-9)=25p | | 2b+3=5b-2 | | 7-5/8+2x=-23 | | 215=128-v | | 3x+9=−4x−5 | | 6x-24=288 |